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Abstract. Progress in better understanding and modeling Earth surface systems requires an ongoing integration of 

data and numerical models. Advances are currently hampered by technical barriers that inhibit finding, accessing, and 

executing modeling software with related datasets. We propose a design framework for ‘Data Components’: software 

packages that provide access to particular research datasets or types of data. Because they use a standard interface 15 

based on the Basic Model Interface (BMI), Data Components can function as plug-and-play components within 

modeling frameworks to facilitate seamless data-model integration. To illustrate the design and potential applications 

of Data Components and their advantages, we present several case studies in Earth surface processes analysis and 

modeling. The results demonstrate that the Data Component design provides a consistent and efficient way to access 

heterogeneous datasets from multiple sources, and to seamlessly integrate them with various models. This design 20 

supports the creation of open data-model integration workflows that can be discovered, accessed, and reproduced 

through online data sharing platforms, which promotes data reuse and improves research transparency and 

reproducibility. 

1 Introduction 

As the global population increases and infrastructure expands, the need to understand and predict processes at and 25 

near the Earth’s surface, such as water cycling, landsliding, flooding, permafrost thaw, and coastal change becomes 

increasingly acute. Progress in understanding and predicting these systems requires an ongoing integration of data and 

numerical models. Also, given the growing importance of open computational science (Barton et al., 2022; Hall et al., 

2022; Lamprecht et al., 2019; Wilkinson et al., 2016), there is a need to overcome technical barriers that inhibit finding, 

accessing, and operating modeling software tools and related datasets. 30 
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To address these challenges, one research focus is the development of modeling frameworks and standards to support 

model coupling (Hoch et al., 2019; Hutton et al., 2020; Kralisch et al., 2005; Moore & Tindall, 2005; Peckham et al., 

2013). These modeling technologies make it easier to integrate diverse models that represent interrelated physical 

processes to simulate the complex Earth system that drives the movement of water and shapes the planet’s surface. 

For instance, the Earth System Modeling Framework (ESMF) is a flexible open-source software infrastructure for 35 

building and coupling Earth science applications (Hill et al., 2004). The ESMF defines an architecture for composing 

coupled modeling systems and includes data structures and utilities for developing individual models. Another 

example is the open World–Earth modeling framework copan:CORE, which is focused on Earth system models with 

endogenous human societies (Donges et al., 2020) to support the analysis of Earth system dynamics in the 

Anthropocene (Verburg et al., 2016).  40 

In the past decade, efforts were also made to design modeling frameworks that improve the reproducibility of data-

model integration workflows (Gan et al., 2020b; Hut et al., 2022). For example, the Community Surface Dynamic 

Modeling System (CSDMS) is an NSF supported facility that supports and promotes a community of computational 

modelers of the Earth's surface - the dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere. 

CSDMS Workbench is developed as a suite of free and open-source software tools and standards that provide a nimble, 45 

plug-and-play environment for model building, coupling, and exploration for Earth surface processes modeling 

(Tucker et al., 2022). These modeling technologies enable users to write code to create reproducible workflows for 

coupled model simulations and improve efficiency by reducing the time researchers spend wrestling with idiosyncratic 

programs and their interfaces. Another example is CyberWater (Chen et al., 2022), a modeling framework designed 

to support open data and open model integration for solving environmental and water problems. CyberWater supports 50 

direct access to online datasets without tedious work for data preparation, and it includes a generic model agent toolkit 

to help easily integrate models. This system enables users to create graphical workflows to support data provenance 

and reproducible computing. With the development of web technologies and cloud computing, sharing and integrating 

models across an open web environment also becomes possible. Chen et al. (2020) proposed a conceptual framework 

for open web-distributed integrated modeling and simulation, which is intended to enhance the use of existing 55 

resources and help people in different locations and from various research fields to perform comprehensive modeling 

tasks collaboratively.   

In addition, there are several organizations that provide the scientific community with online platforms for sharing 

research datasets, models, and tools to improve the findability, accessibility, interoperability, and reusability (the FAIR 

principles) of digital research objects (Lamprecht et al., 2019; Wilkinson et al., 2016; Chue Hong et al., 2021). For 60 

instance, CSDMS maintains an online Model Repository (Tucker et al., 2022) that catalogs over 400 open-source 

models and tools, ranging from individual subroutines to large and sophisticated integrated models. The Model 

Repository now includes about 20,000 references to literature describing these models and their applications, giving 

prospective model users efficient access to information about how various codes have evolved and are being used. 

Similarly, the Network for Computational Modeling in Social and Ecological Sciences (CoMSES Net) provides an 65 

extensive Model Library of codes used in social and ecological sciences, and together with a curated database of over 

7,500 publications (Janssen et al., 2008). For water-related sciences, HydroShare (Gan et al., 2020a; Horsburgh et al., 
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2015) provides a web-based hydrologic information system to share and publish data and models in various formats 

that are created by individual researchers and research groups. This platform enables researchers to collaborate and 

work in an online environment to enhance research and education and improve the reproducibility of the research 70 

results. Geoscience Cyberinfrastructure for Open Discovery in the Earth Sciences (GeoCODES 

https://www.earthcube.org/geocodes) is another effort aiming to improve the discovery and access of research datasets 

and tools. GeoCODES provides a data standard and a set of tools to expose, index and query datasets across 

repositories.  

Although many modeling technologies and cyberinfrastructures are available to support open data and model 75 

integration, challenges still exist. For example, rapid advances in observational data using remote sensing and other 

technologies have brought about a data revolution, and with it the potential for substantial improvement in our ability 

to understand and predict a diverse array of Earth systems. However, the majority of model frameworks and systems 

lack an effective mechanism to easily access datasets from a variety of sources and couple them with the models. 

Although some model frameworks and systems can use web services to access various datasets and provide them as 80 

model inputs, the problem remains that the data access and preparation methods tend to be developed around specific 

models or model frameworks, and the corresponding details are either hidden behind a graphical user interface (GUI) 

or provided with scripts that offer only limited options for the users. It is challenging for researchers to understand or 

modify the data access or preparation methods for their research needs, which inhibits the research transparency and 

impedes flexibility. Moreover, it is often difficult to reuse data access methods for different modeling frameworks, 85 

which leads to redundant programming efforts.   

To address these challenges, we present the design and development of the CSDMS Data Components. This design is 

built on the model coupling technologies from the CSDMS Workbench to enable data access through plug-and-play 

components, and thereby integrate datasets with models. This design aims to provide a consistent way of using datasets 

across multiple sources to better facilitate the integration of heterogeneous datasets with models for Earth surface 90 

processes. This design also supports creating data-model integration workflows that can include detailed data access 

and preparation steps, and can be shared and executed on cloud platforms to enable the geoscience community to 

discover, access, and reproduce computational modeling research. In addition, the proposed design provides the 

flexibility to couple Data Components under different modeling frameworks with minimal coding effort.  

In this paper, Section 2 presents the background for the CSDMS model coupling technologies and the Data Component 95 

design. Section 3 presents case studies for Data Component implementation and their use cases for Earth surface 

processes modeling. Section 4 provides the summary and conclusions.   
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2 Methods  

2.1 CSDMS Workbench 100 

Since the Data Component design is based on the CSDMS Workbench, we will first introduce its underpinning 

modeling technologies, including the Basic Model Interface (BMI), Babelizer, Python Modeling Toolkit (pymt), and 

Landlab.  

BMI is an interface specification that identifies a minimal set of functions necessary for dynamic coupling of data to 

models or models to other models. The BMI concept was first introduced as a foundational technology for the CSDMS 105 

model coupling framework (Peckham et al., 2013). The current version of BMI updated the original design with new 

functions for describing variables and for working with structured and unstructured grids (Hutton et al., 2020; Tucker 

et al., 2022). BMI is a language-neutral standard that is defined using the Scientific Interface Definition Language 

(SIDL) (Epperly et al., 2011). CSDMS has defined language-specific BMI specifications for Python, C, C++, Java, 

and Fortran, which are the most commonly used languages for Earth system models. BMI is designed to be framework 110 

agnostic, and to be as easy as possible for a developer to implement. This means that a component that exposes a BMI 

can be incorporated into any framework and does not need to be modified to add any BMI-specific dependencies into 

the component. Several modeling frameworks that support model coupling (Hoch et al., 2019; Hut et al., 2022) have 

been built upon the BMI. Two such BMI-capable frameworks, the pymt and Landlab, are described below. 

Babelizer is a command-line utility that creates a Python-importable package to present the BMI component as a 115 

Python class (Hutton et al., 2022). Language interoperability is critical to a model coupling framework that brings 

together models written in a range of programming languages. One of the approaches to tackle this challenge is to use 

a hub language, through which other languages will communicate, and to build bridges from each supported language 

to the hub language. CSMDS adopted this approach for the Babelizer and chose Python as the hub language. The 

Babelizer helps streamline the process of bringing a BMI component written in C, C++, and Fortran into Python and 120 

is easily extensible to support other languages. 

pymt is a Python-based model coupling framework that provides a set of utilities for running and coupling BMI 

components (for model and data) (Tucker et al., 2022). This model coupling framework consists of three major pieces. 

The first is a collection of legacy models that represent a diverse set of environmental systems. Models in the pymt 

collection are written in a variety of languages (e.g., C, C++, and Fortran), but are wrapped with a Python BMI as a 125 

common interface. The second piece is a wrapper for BMI components that augments them with additional 

capabilities, such as memory management, unit conversion utilities, and grid mappers. The third piece is a set of 

utilities for performing common model-coupling tasks, which includes the grid interpolation via the ESMF grid 

mapping engine (used when models or data operate on different grids) (ESMF Reference Manual for Fortran, 2023), 

time interpolation (used when models or data operate on different temporal time steps), unit conversion through the 130 

UDUNITS package (https://www.unidata.ucar.edu/software/udunits/), and a coupling orchestrator that organizes the 

time stepping of a set of components.  

Landlab is a toolbox for building new components within a Python-based (BMI compatible) modeling framework 

(Hobley et al., 2017; Barnhart et al., 2020). Landlab includes three major elements that speed up model development 
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and analysis. The first is a gridding engine that allows model developers to create a grid in as little as a single line of 135 

code, and that provides users a choice of grid type (e.g., a structured rectilinear grid versus an unstructured mesh). 

The second piece is a growing collection of modularized components that model single physical processes (e.g., 

overland flow or hillslope process). The third element is a library of utilities for common operations such as file input 

and output that includes standard formats such as NetCDF and Esri ASCII. The Landlab library provides components 

that can be brought into other frameworks and, additionally, be automatically wrapped with BMI, allowing them to 140 

operate within BMI-friendly systems such as pymt.  

  

2.2 Data Component Design  

A Data Component is a dataset that is wrapped with a BMI. When a model is equipped with a BMI, we refer to it as 

‘Model Component’.Model Components make models easier to learn and to couple with other models because of the 145 

similarity in control and query functions among different models. Similarly, by wrapping datasets with BMI functions, 

we provide a consistent way to access various types of datasets without considering their specific file formats and 

making them easier to integrate with Model Components. Thus, the Data Component extends the application of BMI 

from models to datasets. With BMI, Model and Data Components use the same functions to initialize the component, 

control its execution (e.g., advance a model or dataset in time), and access variables, grid, and/or time information. 150 

Both applications use configuration files to specify the detailed information needed to initialize component instances. 

Table 1 lists the example BMI functions for each category. (Note that not all BMI functions are necessarily relevant 

for every Data Component. For example, for a dataset that lacks time-stamped data, the time-related functions would 

not be needed, and would simply return null values.) 

The specifications for the Data Components are designed to meet the following requirements:  155 

• Access datasets from either a remote server or a local file system. Remote servers provide web services and/or 

a corresponding application programming interface (API) to support programmatic data access. 

• Use the same data structure to manage datasets stored in different file formats (e.g., CSV, GeoTIFF, or 

NetCDF) and grid types (e.g., 1D, 2D or 3D array) for time series, raster, or multidimensional space-time 

data.  160 

• Use open-source tools and standards for Data Component implementation and avoid dependencies on 

proprietary software. 

• Expose a BMI so that Data Components can be used within different modeling frameworks without the need 

to modify their implementation. 

The Data Component design is based on the CSDMS Workbench and includes two major elements (Fig. 1). The first 165 

element is the BMI component which can be implemented as a Python package to download the datasets and wrap 

them with BMI functions (Table 1). This package includes an API, which can be implemented as a Python class to 

access and retrieve the datasets from a remote server. The corresponding command line interface (CLI) can also be 

included, which allows users to download datasets through shell commands. The datasets can be cached locally and 

loaded as an xarray object (Hoyer and Hamman, 2017) to satisfy the need for using the same data structure to manage 170 
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datasets in various formats and grid types. The second element is a Babelized component, which is a Python package 

created by the Babelizer. This Babelized component converts the BMI component into a plug-and-play component 

for the modeling frameworks (e.g., pymt). It can also help import the BMI components that are implemented in other 

languages as a Python class, so that they can communicate with each other using the hub language (Python). For the 

second element, the developer only needs to provide metadata describing the BMI component through a toml-format 175 

file. And the Babelizer will use the metadata to construct a Python package, which is almost completely autogenerated 

(Hutton et al., 2022). This design minimizes the effort of using the Data Component within different modeling 

frameworks, because there is no need to change the BMI implementation and one only needs the Babelizer and the 

required metadata to create a component for any relevant modeling framework.  

 180 

Table 1 List of BMI functions shared by Model and Data Components. 

 

Function Category Function Name Description 

component control  initialize Perform startup tasks for the component. 

update Advance component state by one time step. 

finalize Perform post execution tasks for the component.  

component information  get_component_name Name of the component. 

get_output_names List of a component’s output variables. 

get_output_item_count Number of a component’s output variables. 

variable information get_var_grid Get the grid identifier for a variable. 

get_var_units Get the units of a variable. 

get_var_type Get the data type of a variable. 

get_var_location Get the grid element type of a variable. 

time information get_current_time Current time of the component. 

get_time_units Time units used in the component. 

get_time_step Time step used in the component. 

grid information get_grid_type Get the grid type as a string. 

get_grid_shape Get the dimensions of a computational grid 

get_grid_spacing Get the spacing between grid nodes. 

variable getter and setter get_value Get current values for a variable. 

set_value Set current values for a variable. 
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Figure 1: Relationship between datasets, models, and the CSDMS Workbench tools. 185 

 

To test the Data Component design, we conducted case studies by implementing several Data Components and 

creating use cases for Earth surface processes modeling and analysis. These datasets are from multiple data providers 

and in various file formats and grid types. The use cases are data-model integration workflows created as Jupyter 

Notebooks and shared in HydroShare. We also installed the CSDMS Workbench tools on the CUAHSI JupyterHub 190 

(https://help.hydroshare.org/apps/CUAHSI-JupyterHub/) and the CSDMS JupyterHub 

(https://csdms.colorado.edu/wiki/JupyterHub). This enables users to discover and access these use cases from 

HydroShare and use the CUAHSI or CSDMS JupyterHub to reproduce the modeling workflows without the need of 

software installation and data download on the local computers. Moreover, users can also use the environment files 

which are prepared for these use case Jupyter Notebooks to build local virtual environments and run them. Detailed 195 

results and discussion are presented in the next section.  
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3 Case Studies 

3.1 Data Components  

We implemented multiple Data Components to demonstrate the access to widely used datasets for Earth surface 200 

processes modeling. To illustrate the broad applicability of Data Components, these examples cover several 

disciplinary domains: hydrology, topography, soil, meteorology, and oceanography. The data types span the categories 

of time series, geographic raster, and multidimensional space-time data. Here we provide an overview of each Data 

Component; the code implementation details are available in GitHub (See Code Availability Section).  

The NWIS Data Component is implemented to access time series of hydrological data from the US Geological 205 

Survey’s National Water Information System (NWIS https://waterdata.usgs.gov/nwis). NWIS provides RESTful 

(Representational State Transfer) web service to access current and historical water-resources datasets across the US, 

such as discharge, gage height, and water temperature. REST web services allow users to access data using Uniform 

Resource Identifier (URI), which distinguishes one resource from another (e.g., links on the web). Our NWIS Data 

Component can download the time series for instantaneous and daily values from NWIS using the ‘dataretrieval’ 210 

Python package (Hodson et al., 2023), which is a Python client for the REST web services of NWIS. This Data 

Component needs a configuration file that specifies USGS site number, start and end time, USGS variable code, and 

output file name. Each Data Component supports storage of the dataset in a NetCDF file which can include time series 

for multiple variables at multiple USGS sites. The time values are stored in a format by following the Climate and 

Forecast (CF) metadata conventions (http://cfconventions.org/).   215 

The Topography Data Component fetches global terrain elevation raster data from OpenTopography 

(https://opentopography.org/), an NSF-supported facility that provides access to many different types of topography 

data, alongside related tools and resources. OpenTopography provides REST web services to retrieve raster datasets 

such as NASA Shuttle Radar Topography Mission (SRTM) and JAXA Advanced Land Observing Satellite (ALOS) 

global data (Tadono et al., 2014; Farr et al., 2007). These REST web services were used to implement an API and a 220 

CLI in the Topography Data Component for downloading these datasets. Dataset type, latitude-longitude bounding 

box, and the desired output file format can be specified with arguments to this Data Component or through a 

configuration file. As of this writing, users are required to apply for an API key from OpenTopography to be authorized 

for data access, which helps OpenTopography monitor and understand the usage of the REST web services and to 

provide a more stable and secure user experience. For this data component, we implemented a utility function to help 225 

access the API key on local computers to simplify the process for data access authorization.  

The SoilGrids Data Component provides access to the global gridded soil data from SoilGrids 

(https://www.isric.org/explore/soilgrids), a system for global digital soil mapping that uses machine learning methods 

to map the spatial distribution of soil properties (Poggio et al., 2021; Hengl et al., 2017). The SoilGrids system provides 

web coverage services (WCS) to help users obtain a subset of the soil maps as raster datasets for soil properties such 230 

as bulk density, clay content, and soil organic carbon content. The WCS were used to implement the API and CLI in 

the SoilGrids Data Component to download the desired soil datasets and store them in a local GeoTIFF file. This Data 

Component requires a configuration file that includes the information for the map service name, bounding box, 
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coordinate system, grid resolution, and other parameters. Fig. 2 shows the example scripts that use the API and the 

Babelized component (e.g., pymt component) to access and visualize the same soil property dataset from SoilGrids 235 

system.  

The ERA5 Data Component accesses the ERA5 climate dataset, which is available in the Copernicus Climate Data 

Store (CDS https://cds.climate.copernicus.eu/). ERA5 refers to European Centre for Medium-Range Weather 

Forecasts (ECMWF) reanalysis 5, which includes multidimensional space-time datasets produced using data 

assimilation and model forecasts for the global climate and weather for the period from the 1950s to near real time. 240 

The ERA5 Data Component downloads data using ‘cdsapi’ Python package, which is the API for retrieving datasets 

from the CDS platform. This Data Component requires a configuration file that includes information for data variables, 

time period, latitude-longitude bounding box, grid resolution, and other parameters. Each ERA5 Data Component 

supports storing the datasets in a NetCDF file, which can contain multiple variables for a given bounding box area. 

Similar to the Topography Data Component, users are required to apply for API keys from the CDS platform to be 245 

authorized for data access. We implemented a utility function to help generate the API key files on the local computers 

for data access authorization. 

The WAVEWATCH III Data Component retrieves data from the global wave datasets 

(https://polar.ncep.noaa.gov/waves/product_table.shtml?) that are generated with the WAVEWATCH III model 

(Booij et al., 1999). These model outputs are multidimensional space-time datasets for wave height, period, direction, 250 

and other attributes. The WAVEWATCH III Data Component includes an API and a CLI, which use web services to 

download the 30-year wave hindcast (Phase 1 and 2) and the production hindcast (single grid and multigrid) datasets 

and store them as GRIB-formatted files. This Data Component requires a configuration file that includes the 

information for time, grid type, and data source. 

Aside from the Data Components presented here, we also implemented other Data Components. For example, the 255 

GeoTIFF Data Component can access any raster data in a GeoTIFF file through either a local file path or a remote 

URL. The GridMET Data Component can fetch the daily meteorological datasets from gridMET (Abatzoglou, 2013). 

A full list of the CSDMS Data Components can be found at https://csdms.colorado.edu/wiki/DataComponents.  
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Figure 2: Example scripts that use the API (a) and the pymt component (b) of the SoilGrids Data Component 

to access and visualize the soil property dataset (c). 

 265 

3.2 Use Cases 

We here present several use cases that cover a variety of topics, including landslide susceptibility mapping, modeling 

of overland flow in a wildfire-impacted catchment, permafrost landscape processes, and wave power. Each use case 

is designed to demonstrate the application and the capabilities of Data Components rather than new findings for these 

research topics, so we will not focus on the analysis details. The data-model integration workflows for these use cases 270 

can be discovered, accessed, and reproduced on the HydroShare platform or the CSDMS web portal (See Code 

Availability Section).  

3.2.1 Landsliding  

Landslides are a dominant source of sediments in mountain regions (Broeckx et al., 2020). Landslides cause thousands 

of casualties annually, together with expensive damage to infrastructure (Haque et al., 2016; Petley, 2012). Landslides 275 

are also point sources of sediment in riverine systems, altering stream geomorphology (Benda and Dunne, 1997), 

potentially creating landslide dams and subsequent failures (Costa and Schuster, 1988), altering ecosystem functioning 

(May et al., 2009), and increasing downstream flood risk (Fan et al., 2019). Our example use case focuses on Puerto 

Rico, where a combination of steep terrain and heavy rainfall from hurricanes makes landslides a common occurrence. 

For example, Hurricane Maria made its landfall on September 20th, 2017 and triggered more than 40,000 landslides 280 

(Bessette-Kirton et al., 2019). In this use case, we chose a study area that had high concentration of landslides during 

Hurricane Maria. We used several Data Components to generate landslide susceptibility maps in this region.  
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We adopted the method of Strauch et al. (2018) to calculate landslide susceptibility using a factor-of-safety approach. 

This method requires data for soil depth, terrain slope, and subsurface flow depth. To prepare those inputs, we used 

the Topography and ERA5 Data Components to access terrain elevation, soil moisture content, and precipitation 285 

datasets. We also retrieved the soil depth-to-bedrock dataset from the SoilGrids system. Terrain slope was derived by 

coupling the Topography Data Component with the Landlab RasterModelGrid component to calculate the slope angle. 

Subsurface flow depth was calculated by using the soil depth and soil moisture content datasets. The precipitation data 

is not used for input preparation but rather for visualization purposes to show the water input conditions in the study 

area. Since these datasets are in different grid resolutions, we performed data regridding to interpolate the soils and 290 

precipitation data to the same resolution as the SRTM terrain elevation data (~90 by 90 m per grid cell). Using these 

inputs, we looped through 48 one-hour time steps (for Sept 20-21, 2017, the time period over which Hurricane Maria 

made landfall) to generate hourly results. The hourly maps were used to create an animation that shows the changes 

in landslide susceptibility and subsurface flow depth over the two-day period. The time series of mean total 

precipitation and soil moisture content at four soil layers (layer 1: 0 - 7cm, layer 2: 7 - 28cm, layer 3: 28 - 100cm, 295 

layer 4: 100 - 289cm) for the study area are also shown in the results. Fig. 3 shows the input terrain elevation and 

slope maps, and Fig. 4 shows an example output. When the precipitation reached its peak, soil layer 1 and 2 responded 

quickly and reached high soil moisture content, while layer 3 responded with a time lag and layer 4 kept with a low 

value. The areas where the landslide susceptibility increased most correspond to the areas that have high slope angle 

and more increase of subsurface flow depth. Landslide susceptibility mapping is an important approach for evaluating 300 

the likelihood of a landslide occurring in an area, which provides critical support to reduce disaster loss. This use case 

highlights the value of Data Components for recreating near-real time landslide susceptibility maps in regions prone 

to the landslide hazards, or to do first-order exploratory simulations in response to a large landsliding event anywhere 

in the world. 

 305 
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Figure 3: The study area in Puerto Rico. Panel (a) shows the bounding box of the study area; (b) shows a field 

photo of a landslide in the study area after Hurricane Maria (source from NOAA weather service 

https://www.weather.gov/sju/maria2017); (c) shows the terrain elevation data; (d) shows the calculated slope 

angle using the Landlab RasterModelGrid component. 310 

 

 
Figure 4: Example result for the study area in Puerto Rico. The left panel shows the mean total precipitation 

and the mean volumetric soil water content at four soil layers; the right panel shows the difference of landslide 
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susceptibility and the subsurface flow depth between the first (2017-09-20 00:00) and the current (2017-09-21 315 

00:00) time step.  

3.2.2 Rainfall-runoff modeling in wildfire-affected watersheds 

Storm runoff occurs when saturated soil cannot absorb additional water (saturation-excess mechanism) or when the 

rate of water input on the land surface is higher than the infiltration rate (infiltration-excess mechanism). The 

generation of runoff is mainly impacted by the intensity of rainfall and the landscape surface characteristics such as 320 

vegetation density (surface roughness), antecedent moisture condition, and slope. In particular, after a destructive 

wildfire burns away plants and trees and affects the soil to alter the site characteristics (Shakesby and Doerr, 2006), 

heavy rain can cause substantial overland flow and potentially trigger debris flows (Malvar et al., 2011; Cannon et al., 

1998). In the western US, wildfires are already increasing in size and frequency, and the frequency and intensity of 

post-fire overland flow are likely to increase even further in the future (Beeson et al., 2001; Halofsky et al., 2020; 325 

Abatzoglou et al., 2021). Thus, it is important to simulate overland flow processes to study the hydrologic responses 

of burned watersheds. In this use case, we performed a rainfall-runoff simulation for the watershed of Geer Canyon 

in the Colorado Front Range (USA), northwest of the city of Boulder (Fig. 5a, 5b). This watershed was impacted by 

the CalWood Fire, which occurred in 2020 and burned more than 4,000 hectares.  

In this use case, we used the Topography Data Component to retrieve terrain elevation data for the study area (Fig. 330 

5c). We performed a watershed delineation (Fig. 5d) by coupling this Data Component with Landlab components, 

specifically FlowAccumulator and ChannelProfiler (Barnhart et al., 2020). Then we used the watershed terrain 

elevation as input for a model of rainfall and runoff using Landlab’s OverlandFlow component (Adams et al., 2017). 

The model run time is set as 200 minutes with the first 10 minutes assigned a constant rainfall intensity (59.2 mm/hr) 

based on the meteorological observations on June 25, 2021, the summer after the CalWood fire occurred. This 335 

simulation created a discharge time series plot at the watershed outlet and a map of the surface water depth over the 

watershed at each 30-second time step (Fig. 6). Finally, an animation was made to show the overland flow process 

during the simulation time. This use case demonstrates the ability to couple a Data Component with Landlab 

components for post-fire overland flow simulation and for exploring a watershed storm response after fire events. This 

modeling workflow can be applied to perform experiments by adjusting the model parameters and inputs (e.g., surface 340 

roughness, infiltration rate, rain intensity) to evaluate the impact of wildfire on hydrologic responses for watersheds 

more generally.  
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Figure 5: The watershed of Geer Canyon. Panel (a) shows the bounding box of the study area; (b) shows field 

photo of the burned study area in March 2021; (c) shows the terrain elevation data; (d) shows the watershed 345 

delineation result using the Landlab FlowAccumulator and ChannelProfiler components.  
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Figure 6: Example result of discharge and surface water depth from the Landlab OverlandFlow component 

for the watershed of Geer Canyon. This watershed is not gauged at its outlet but flows overbanked Geer Creek 

and spilled over the adjacent road in the June 25th rain event (personal comment Boulder Open Space). 350 

 

3.2.3 Permafrost thaw and hillslope diffusion 

Permafrost is defined as rock or soil that remains below 0°C for two or more consecutive years. Nearly a quarter of 

soils in the Northern Hemisphere are permafrost-affected (Zhang et al., 2008). With the trend of global warming, an 

increasing amount of permafrost thaws due to above freezing temperatures and causes geologic hazards such as 355 

landslides, ground subsidence, erosion, and other severe surface distortions (Lawrence and Slater, 2005; Nelson et al., 

2001; Patton et al., 2019). Research for the future transformation of the permafrost in a changing climate becomes 

vital to reduce the negative impact of thawing permafrost on, for example, coastal erosion and infrastructure (e.g., 

roads and houses), and to assess the potential for the release of soil carbon to the atmosphere. In this use case, we 

applied the Kudryavtsev model (Anisimov et al., 1997; Kudryavtsev et al., 1977) for a study area in Alaska to evaluate 360 
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the impact of the warming climate on the thickness of the active layer of permafrost. Additionally, we applied the 

Kudryavtsev model output, the active layer thickness, as the input for a hillslope soil transport model to predict 

hillslope evolution in the Eight Mile Lake area, just south of Denali National Park.  

The Kudryavtsev model includes thermodynamic processes that provide a steady-state solution under the assumption 

of a sinusoidal air temperature forcing to predict the annual active layer thickness and snow surface temperature. This 365 

model has been implemented as a pymt Model Component, for which the major inputs include annual mean 

temperature, amplitude of annual temperature variation, and snow cover depth. We obtained monthly mean air 

temperature, snow density, and snow water equivalent data using the ERA5 Data Component, and further processed 

these quantities to provide model inputs. To evaluate the impact of a warming climate, we prepared two sets of 

inputs—for 1980-1989 and 2010-2019, respectively—to compare their corresponding model outputs. Fig. 7 shows 370 

the model input time series and Fig. 8 shows the model output of the annual active layer thickness. These plots show 

that the annual mean temperature tends to increase while the temperature amplitude and snow cover depth became 

lower in 2010-2019 than in 1980-1989. However, the warming and drying climate didn’t lead to a significant change 

in the active layer thickness. We conducted model experiments to find out the reason. We first calculated the 10-year 

average of annual mean temperature, amplitude of annual temperature variation, and snow cover depth for 1980-1989 375 

and 2010-2019. Then we used these inputs to conduct two model runs for those periods. The model result for 1980-

1989 will be taken as the "base" experiment for comparison. We then conducted 3 model runs of which each 

experiment used two inputs from the 10-year average for 1980-1989 and one for 2010-2019. The results showed that 

it can lead to an increase of the active layer thickness by only increasing the annual temperature. But especially if the 

snow thickness decreases, its insulating capacity in mid and late winter will decrease, and as such the active layer 380 

thickness will also decrease. Therefore, the respective change of warming temperature versus a decreasing snow 

thickness can act in opposing directions and thereby minimize changes for the active layer thickness. This phenomenon 

was also observed with field datasets and studied by several researchers at other study sites (Garnello et al., 2021; 

Zhang, 2005). 

To examine the potential impact of active layer thickening on soil transport, we implemented a simple model of 385 

hillslope evolution using the Landlab DepthDependentDiffuser component to simulate the modification of topography 

by thaw-enhanced soil creep. The Topography Data Component was used to prepare the terrain elevation input (Fig. 

9), and the active layer thickness for 2010-2019 was used as the soil depth input to the hillslope evolution model. We 

performed a model simulation representing 1,000 years of geomorphic evolution and made an animation to show the 

changes in terrain elevation. This use case provides an example of coupling Data Components with both pymt and 390 

Landlab Model Components, which shows the flexibility of integrating Data Components with multiple modeling 

frameworks to simulate interrelated landscape surface processes.  
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Figure 7: Temperature and snow inputs of the Kudryavtsev model for the Eight Mile Lake area. Panel (a) for 395 

1980-1989 and (b) for 2010-2019. 
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Figure 8: Active layer thickness results of the Kudryavtsev model for the Eight Mile Lake area. Panel (a) for 400 

1980-1989 and (b) for 2010-2019.  
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Figure 9: Hillslope evolution result of the Landlab DepthDependentDiffuser component for the Eight Mile Lake 405 

area. 

 

3.2.4 Wave Power 

Energetic waves cause shoreline erosion, change geomorphology, and generate renewable energy (Hansen and 

Barnard, 2010; Mwasilu and Jung, 2019; Vousdoukas et al., 2020). Globally, around 28,000 km2 of permanent coastal 410 

land was lost from 1984 to 2015, which is double the amount of land gained over this same period (Mentaschi et al., 

2018). Wave power can be a useful predictor of shoreline change (e.g., beaches: Davidson et al., 2013; marshes: 

Leonardi et al., 2016), with higher wave heights and longer wave periods leading to larger wave power. Wave power 

is also used to assess feasibility of renewable energy generation (Ozkan and Mayo, 2019; Thorpe, 1999). This use 

case therefore focuses on extracting and analyzing wave characteristics and calculating wave power for the Louisiana 415 

Shelf in the Northern Gulf of Mexico. 

The National Oceanic and Atmospheric Administration (NOAA) runs the WAVEWATCH III model (Booij et al., 

1999) on several different grids (EMC Operational Wave Product Table, 2023). The WAVEWATCH III Data 

Component increases the accessibility and useability of model estimates and is used here to facilitate wave power 

calculations. WAVEWATCH III variables, including significant wave height, peak wave period, peak wave direction, 420 

and east-west and north-south wind speeds were downloaded using this Data Component. For the analysis, data from 

the Gulf of Mexico and Northwest Atlantic grid were used because of the relatively high resolution of 4 arcminutes 

(~110 m at the study site). Data for the summer of 2005 was interpolated to a specific location (28.8°N, 276.4°E) on 

the Louisiana Shelf and shown in Fig. 10. For this figure, wave direction is given in meteorological convention, with 
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0 degrees meaning that waves are coming from the north and 90 degrees meaning waves are coming from the east. 425 

Winds are also given in meteorological convention, meaning positive v values are coming from the north and positive 

u values are coming from the east. Wave power was then calculated using the WAVEWATCH III estimates of 

significant wave height and peak wave period for this location. The result was visualized using a time series and a 

rose diagram (Fig. 11 and Fig. 12). Results indicate that significant wave height and therefore wave power were larger 

in mid-March through mid-April, compared to later portions of Spring 2005. Waves were primarily traveling 430 

northwestward, including during the time periods with larger wave power. This use case demonstrates how the 

WAVEWATCH III Data Component can be used to analyze wave conditions that are important for coastal shoreline 

change and renewable energy generation. It also demonstrates how to use the API of the Data Component instead of 

the Babelized component for data access, when there is no need to couple Data and Model Components for analysis.    

 435 
Figure 10: Time series of the wave characteristics from WAVEWATCH III interpolated to 

28.8°N, 276.4°E in the Gulf of Mexico.  

 

 

 440 
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Figure 11: Time series of wave power at 28.8°N, 276.4°E in the Gulf of Mexico. 

 
Figure 12: Rose diagram of wave power at 28.8°N, 276.4°E in the Gulf of Mexico. The length of each bar and 445 

the concentric circles indicate the percentage of datapoints with waves coming from that direction 

(meteorological convention). The color indicates the wave power. 
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3.3 Discussion  

The case studies demonstrated that the Data Component design can be applied to a variety of datasets to support data-450 

model integration for Earth surface processes research. From the implementation and use cases of the Data 

Components, we found that our design provides benefits in the following aspects. 1) Usability: since the datasets are 

wrapped with BMI, the methods to get metadata and data values are the same regardless of their file formats and the 

grid types. This feature can be found from the four use cases where the code for retrieving the variable and grid 

information is the same for various Data Components. This simplifies the way to learn about new Data Components 455 

if the users are already familiar with other Data Components. Additionally, because the Model Components also adopt 

the BMI methods, it becomes intuitive for users to know how to couple the data and model components together. 2) 

Reproducibility: Data Components are implemented as open-source Python packages, which enables users to 

document the data-model integration workflows in the Jupyter Notebooks for tracking and sharing computational 

analysis. Compared with the modeling frameworks that allow users to create modeling workflows via GUI, the Data 460 

Component design helps to provide detailed information for data access and preparation behind the scenes. 3) 

Flexibility: the design provides a flexible way of using Data Components. Users can either use the API directly for 

data analysis when there is no need to couple data with models (e.g., Coastal erosion use case) or use the Babelized 

component under the modeling framework (e.g., Overland flow use case), which can help write efficient code for 

different situations. In addition, this design provides the flexibility to make the Data Components work within 465 

modeling frameworks or tools that support, or are compatible with, the BMI standard (e.g., Landlab) without making 

additional changes to the Data Components.  

While developing the use cases, we also identified the limitations of the existing BMI methods to represent the features 

of datasets. It will improve the usability of Data Components by extending the BMI standard with new methods 

designed for Data Components. For instance, adding methods to access the spatial reference information of the datasets 470 

can facilitate data reprojection and regridding to convert heterogeneous datasets to the same grid resolution and 

coordinate system. Moreover, the existing BMI methods mainly support wrapping datasets with spatial and time 

dimensions, and it becomes challenging to deal with datasets that include dimensions representing other variables. 

Take the ERA5 datasets as an example: there are ensemble model simulation results that include dimensions 

representing the ensemble number and/or the pressure levels. The existing BMI methods don’t support accessing the 475 

information for those types of dimensions, so the current implementation of ERA5 Data Component mainly supports 

datasets that only include spatial and time dimensions.    

Currently, new Data Component and use cases are also under development. One example is the ROMS Data 

Component designed to access the model outputs of the Regional Ocean Modeling System (ROMS) (Haidvogel et al., 

2008). The ROMS Data Component will be coupled with the Landlab and pymt Model Components to help explore 480 

the fate of particulate organic carbon in the Arctic, including its release via permafrost thaw, transport and oxidation 

in the fluvial and coastal systems, and its burial in offshore sediments.  
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4 Conclusions  

The integration of data and numerical models plays a vital role in advancing the understanding of the complex 485 

processes of Earth systems. However, with the increasing number of datasets available on the internet and the growing 

trend of reproducible computational research, there is a need to provide a convenient and standardized way to access 

a variety of datasets and easily couple them with diverse models to improve the efficiency and reproducibility of the 

data-model integration workflows.  

This paper presents an approach that uses open-source software and standards from the CSDMS Workbench to create 490 

‘Data Components’ that support open data-model integration for Earth surface processes modeling. A Data 

Component is a dataset wrapped with BMI functions. To test and evaluate our approach, we implemented several Data 

Components for datasets in various file formats and grid types, and then applied them in research demonstrations 

related to landsliding, overland flow, permafrost, and ocean waves. The results demonstrated that the Data Component 

design provides a consistent way to access and use online datasets from multiple sources and to easily couple data 495 

with models, which increases the accessibility and reusability of research datasets.  

Another advantage of the Data Component design is that it enables researchers to document the data-model integration 

workflow in a Jupyter Notebook, which helps other researchers to discover, access, operate, and reuse modeling work 

through online platforms. This approach can help improve research transparency and workflow reproducibility to 

encourage collaboration. Moreover, our use cases can be adapted and applied to other study sites so that researchers 500 

can rapidly set up modeling studies after or during an event to have a quick exploration or initial assessment of the 

natural hazards. Although our case studies are centered on Earth surface processes and natural hazard impacts, the 

core concepts of the Data Component design are extensible to datasets in other scientific domains.  

In the future, we will focus on developing new Data Components and extending BMI to support wider range of 

datasets. We will also provide educational materials to encourage the geoscience community to apply existing, or 505 

implement new, Data Components to create reproducible data-model integration workflows.  

 

Code Availability 

NWIS Data Component:  

For BMI: https://github.com/gantian127/bmi_nwis  For pymt: https://github.com/gantian127/pymt_nwis 510 

Topography Data Component:  

For BMI: https://github.com/csdms/bmi-topography For pymt https://github.com/pymt-lab/pymt_topography 

SoilGrids Data Component:  

For BMI:  https://github.com/gantian127/soilgrids  For pymt: https://github.com/gantian127/pymt_soilgrids 

ERA5 Data Component:  515 

For BMI: https://github.com/gantian127/bmi_era5  For pymt https://github.com/gantian127/pymt_era5 

WAVEWATCH III Data Component:  

For BMI https://github.com/csdms/bmi-wavewatch3 For pymt https://github.com/pymt-lab/pymt_wavewatch3 
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Use Case Jupyter Notebooks: 

 https://www.hydroshare.org/resource/28af99c09ee4423dbffef28bf32837e0/ 520 
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